Upconversion and anti-Stokes processes with f and d ions in solids.

نویسنده

  • François Auzel
چکیده

Before the 1960s, all anti-Stokes emissions, which were known to exist, involved emission energies in excess of excitation energies by only a few kT. They were linked to thermal population of energy states above excitation states by such an energy amount. It was the well-known case of anti-Stokes emission for the so-called thermal bands or in the Raman effect for the well-known anti-Stokes sidebands. Thermoluminescence, where traps are emptied by excitation energies of the order of kT, also constituted a field of anti-Stokes emission of its own. Superexcitation, i.e., raising an already excited electron to an even higher level by excited-state absorption (ESA), was also known but with very weak emissions. These types of well-known anti-Stokes processes have been reviewed in classical textbooks on luminescence.1 All fluorescence light emitters usually follow the well-known principle of the Stokes law which simply states that excitation photons are at a higher energy than emitted ones or, in other words, that output photon energy is weaker than input photon energy. This, in a sense, is an indirect statement that efficiency cannot be larger than 1. This principle is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Transfer Upconversion

The usual fluorescence behavior follows Stokes law, where exciting photons are of higher energy than emitted photons. Anti-Stokes processes usually concern emitted energies in excess of excited energies by only a few kT. These processes include anti-Stokes emission by the thermal bands or by the Raman effect. There are processes, however, in which emission photon energy exceeds excited photon e...

متن کامل

Influence of Upconversion Processes in the Optically-Induced Inhomogeneous Thermal Behavior of Erbium-Doped Lanthanum Oxysulfide Powders

The efficient infrared-to-visible upconversion emission present in Er-doped lanthanum oxysulfide crystal powders is used as a fine thermal sensor to determine the influence of upconversion processes on the laser-induced thermal load produced by the pump laser and to assess the potentialities of this material in order to obtain anti-Stokes laser-induced cooling. The analysis of the upconversion ...

متن کامل

Raman laser cooling of solids

A new approach is proposed for 3-D laser cooling of solids. Stimulated Raman scattering on a narrowband electronic transition is used in conjunction with 1-photon optical pumping on a broadband transition to provide a mechanism that cools all the vibrational modes of solids while conserving energy and momentum, photon by photon. The individual steps in the 2-photon Raman process are 4f–5d and 5...

متن کامل

Controlling upconversion nanocrystals for emerging applications.

Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from th...

متن کامل

Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.

Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion. In recent years lanthanide-doped upconversion nanocrystals have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical reviews

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2004